UV-Sensitive Photoreceptor Protein OPN5 in Humans and Mice
نویسندگان
چکیده
A variety of animal species utilize the ultraviolet (UV) component of sunlight as their environmental cues, whereas physiological roles of UV photoreception in mammals, especially in human beings, remain open questions. Here we report that mouse neuropsin (OPN5) encoded by the Opn5 gene exhibited an absorption maximum (λmax) at 380 nm when reconstituted with 11-cis-retinal. Upon UV-light illumination, OPN5 was converted to a blue-absorbing photoproduct (λmax 470 nm), which was stable in the dark and reverted to the UV-absorbing state by the subsequent orange light illumination, indicating its bistable nature. Human OPN5 also had an absorption maximum at 380 nm with spectral properties similar to mouse OPN5, revealing that OPN5 is the first and hitherto unknown human opsin with peak sensitivity in the UV region. OPN5 was capable of activating heterotrimeric G protein Gi in a UV-dependent manner. Immuno-blotting analyses of mouse tissue extracts identified the retina, the brain and, unexpectedly, the outer ears as the major sites of OPN5 expression. In the tissue sections of mice, OPN5 immuno-reactivities were detected in a subset of non-rod/non-cone retinal neurons as well as in the epidermal and muscle cells of the outer ears. Most of these OPN5-immuno-reactivities in mice were co-localized with positive signals for the alpha-subunit of Gi. These results demonstrate the first example of UV photoreceptor in human beings and strongly suggest that OPN5 triggers a UV-sensitive Gi-mediated signaling pathway in the mammalian tissues.
منابع مشابه
Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein.
Opn5 (neuropsin) belongs to an independent group separated from the other six groups in the phylogenetic tree of opsins, for which little information of absorption characteristics and molecular properties of the members is available. Here we show that the chicken Opn5 (cOpn5m) is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. The recombinant expression of cOpn5m in H...
متن کاملLight-induced rapid Ca2+ response and MAPK phosphorylation in the cells heterologously expressing human OPN5
Molecular imaging is a powerful tool for investigating intracellular signalling, but it is difficult to acquire conventional fluorescence imaging from photoreceptive cells. Here we demonstrated that human opsin5 (OPN5) photoreceptor mediates light-induced Ca(2+) response in human embryonic kidney (HEK293) and mouse neuroblastoma (Neuro2a) cell lines using a luminescence imaging system with a fl...
متن کاملExpression of Novel Opsins and Intrinsic Light Responses in the Mammalian Retinal Ganglion Cell Line RGC-5. Presence of OPN5 in the Rat Retina
The vertebrate retina is known to contain three classes of photoreceptor cells: cones and rods responsible for vision, and intrinsically photoresponsive retinal ganglion cells (RGCs) involved in diverse non-visual functions such as photic entrainment of daily rhythms and pupillary light responses. In this paper we investigated the potential intrinsic photoresponsiveness of the rat RGC line, RGC...
متن کاملgdf6a Is Required for Cone Photoreceptor Subtype Differentiation and for the Actions of tbx2b in Determining Rod Versus Cone Photoreceptor Fate
Functional vision restoration is within reach via stem cell therapy, but one of the largest obstacles is the derivation of colour-sensitive cone photoreceptors that are required for high-acuity daytime vision. To enhance progress made using nocturnal murine models, we instead utilize cone-rich zebrafish and herein investigate relationships between gdf6a and tbx2b in cone photoreceptor developme...
متن کاملNeuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea.
The molecular circadian clocks in the mammalian retina are locally synchronized by environmental light cycles independent of the suprachiasmatic nuclei (SCN) in the brain. Unexpectedly, this entrainment does not require rods, cones, or melanopsin (OPN4), possibly suggesting the involvement of another retinal photopigment. Here, we show that the ex vivo mouse retinal rhythm is most sensitive to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011